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Lenses on curved surfaces
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This Letter presents a theory that allows graded index lenses to be mapped onto arbitrary rotationally symmetric
curved surfaces. Examples of the Luneburg and Maxwell fish-eye lens are given, for numerous surfaces, always
resulting in isotropic permittivity requirements. The performance of these lenses is initially illustrated with
full-wave simulations utilizing a waveguide structure. A transformation of the refractive index profiles is then
performed to design surface-wave lenses, where the dielectric layer is not only isotropic but also homogenous,

demonstrating the applicability and ease of fabrication.
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Rotationally symmetric graded index lenses [1-3], such
as the Luneburg lens [4], are able to manipulate the
ray paths so that, for example, an omnidirectional source
can be transformed into a directive beam. These lenses
have been implemented in parallel-plate and in three-
dimensional systems in order to create directive anten-
nas for microwave applications. They also have the
advantage of being capable of beam steering, due to the
rotationally symmetric structure, by changing the posi-
tion of the source. Other graded index lenses include the
Gutman lens [5], where the focal point can be shifted to a
position either inside or at a distance from the surface of
the lens, and the Maxwell fish-eye lens, that produces an
image of the source on the far side of the lens [6].

These types of lenses have also been employed in the
context of surface waves [7], utilizing metasurfaces [8] as
the surface-wave-supporting structure. These devices
have the advantage of being lightweight, thin, and low
volume and are easier to fabricate when compared to
their free-space equivalents. All of the current literature
concentrates upon flat lens designs. However, if these
lenses are to be used in microwave applications, it would
be very advantageous for them to be conformal to an
existing surface [9], particularly in the transport sector,
where antennas can be attached to the outer surface of
land or airborne vehicles without adversely affecting the
aerodynamic properties [10]. This problem is the focus of
this Letter, where lenses are modified so that they are
accurate for curved surfaces. This allows for more free-
dom in terms of design parameters, ultimately leading to
more efficient antennas [11].

It is known that surface curvature can alter the wave
propagation across a surface. If we take the example of
the surface of a sphere, all rays emitted from a point
source on the surface will diverge away from that point,
until they become parallel at the center, and then they be-
gin to converge to create a perfect focus at the antipode.
This behavior can be reproduced on a flat surface using a
spherically symmetric refractive index profile, which in
this case is the Maxwell fish-eye lens. In this Letter, both
index profiles and curvature are combined to create lens
behavior that is accurate on curved surfaces. In order to
map an existing flat lens onto a rotationally symmetric
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curved surface, it is necessary to modify the refractive in-
dex profile. Figure 1 illustrates these two geometries,
where the first is a flat space with a known rotationally
symmetric graded index, and the second is an arbitrary
rotationally symmetric curved surface. A standard cylin-
drical coordinate system is used, and the n; labels are the
refractive indices in the respective geometries. To retain
the wave behavior of the first domain, a modified refrac-
tive index must be placed onto the second surface. This
can be calculated by equating the ray paths on the two sur-
faces to give an equivalent optical length [2,12]. The ray
paths in question are denoted in Fig. 1 with s; and /; 1abels.
Equating the two s; paths gives

ny(r)2xr = ny(0)27R(0) sin(0) (D
and the two [; paths
ny(r)ydr = ny(0)\/R(0)? + R (0)2d6. (2)

After finding the derivative of Eq. (1) and equating with
Eq. (2), the following can be found:

n5(6)
n3(0)
(1 + TZ’i 8) R(0)*+R'(9)* - R (0)sin() - R(9) cos(6)

R(0)sin(0)
3

This equation can then be solved, either analytically or
numerically, to find the modified index profile, n(9).
To illustrate the accuracy of this technique, two exam-
ple lenses are chosen, the Luneburg lens and the Maxwell
fish-eye lens. These are mapped onto various surfaces,
and the index required for each of these surfaces is
shown in Fig. 2 for a lens with radius R,. It can be seen
that the required index contrast can be increased or de-
creased, depending on the type of surface. Also shown is
a homogenous index for both lenses, which requires an
“equivalent” surface to the lens, as previously reported
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Fig. 1. Illustration of the ray paths that are equated for (a) the
flat system and (b) an arbitrary rotationally symmetric curved
surface. n; is the refractive index on each surface.

[2,13]. In all these examples, it is possible to normalize
the refractive index of the external surface, so the final
device will only require refractive indices higher than 1.

In order to ensure that the waves are confined to a sur-
face, it is possible to illustrate the operation of such de-
vices using parallel-plate waveguides, where both plates
follow the surface curvature but are separated by a tenth
of the wavelength [14-16]. Figures 3 and 4 are simulated
with COMSOL, with a perfect electric conductor (PEC)
boundary condition for the upper and lower surfaces
of the waveguide, and a perfectly matched layer (PML)
is implemented around the edge. The E, field component
is then plotted at the upper surface of the waveguide. In
Fig. 3, all four variations of the Luneburg lens shown in
Fig. 2(a) are simulated, and they have been normalized so
that the background index n, = 3. The first simulation,
shown in Fig. 3(a), is a flat surface, where the usual
Luneburg lens distribution, of the form n; = nyv'2 -2,
is employed. In Fig. 3(b), it is the equivalent surface that
has been employed with a homogenous index. The re-
quired index for a Luneburg lens on a hemispherical sur-
face can be calculated analytically and is given by
ny~/1+ 3 cos 6/(1 + cos #)>/2. This profile is simulated
and shown in Fig. 3(c). A cosine shape is the final exam-
ple, given in Fig. 3(d). The latter is chosen as any reflec-
tions due to the discontinuity where the curved part of
the guide meets the flat, are removed [15], although it can
be appreciated that this is not a major influence on the
operation. It can be seen that all four simulations very
accurately convert the cylindrical waves that are excited
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Fig. 2. Index profiles across a normalized lens radius, R, for

(a) the Luneburg lens, and (b) the Maxwell fish-eye lens. Four
surfaces are shown for each lens: the flat case, the Luneburg
equivalent surface, the sphere case (Maxwell fish-eye-
equivalent surface), and a cosine shape.
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Fig. 3. Luneburg lenses with a radius of 54, excited with a
point source on the right edge of the lens, perfectly mapped
onto four different surfaces: (a) a standard flat surface,
(b) the equivalent homogeneous surface, (c) a hemispherical
surface, and (d) a cosine surface.

by a point source at the outer edge of the device to a
plane wave on the opposite side. Provided that these
lenses are a sufficiently large number of wavelengths in
diameter so that geometric optics holds, they can be
scaled in both size and frequency.

The second example given here is the Maxwell fish-eye
lens, which performs the function of forming a second
focal point on the opposite side of the lens, when a point
source is placed on the circumference. Again, the four
profiles given in Fig. 2(b) are simulated, with a back-
ground index 1y = 3. For a flat surface, it has a refractive
index of n,, = 2ny/(1 +7?), and this configuration is
shown in Fig. 4(a). This lens is known to obtain the same
wave propagation characteristics as a homogeneous
hemispherical surface, and this is confirmed by the sim-
ulation in Fig. 4(b). In Fig. 4(c), it is the “Luneburg shape”
that is chosen; however, here it is not homogenous but
has the appropriate index, thereby obtaining the charac-
teristics of the fish-eye lens, as illustrated in Fig. 2(b).
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Fig. 4. Maxwell fish-eye lens with radius of 54, excited with a
point source on the right edge of the lens, perfectly mapped
onto four different surfaces: (a) a standard flat Maxwell fish-
eye lens, (b) the equivalent homogeneous surface (sphere),
(¢) an equivalent surface for a Luneburg lens, and (d) a cosine
surface.
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Fig. 5. (a) Achieved refractive index at 10 GHz of the surface

for varying thickness of a dielectric slab with a permittivity of
&, = 15 which is placed over a metallic surface. (b) Cross sec-
tion of the required dimensions of the Luneburg and Maxwell
fish-eye lenses above the cosine-shaped ground plane.

Finally, in Fig. 4(d), it is again the cosine shape that is
chosen, giving a fourth example of this lens on a curved
surface.

All of the previous simulations have utilized parallel-
plate waveguides to illustrate the performance. One
other option for these lenses is to implement surface-
wave devices for leaky wave or end-fire antennas [17].
For these devices it is necessary to choose one of the
possible surface-wave-supporting structures. These are
either metasurfaces, which can be composed of an array
of patches, or a dielectric slab over a ground plane. Here,
the dielectric slab has been chosen, due to the simplicity
with which it can then be fabricated. The varying refrac-
tive index is obtained by changing the thickness of a
homogeneous dielectric slab over a metallic surface, in
order to obtain the required mode index. An example is
given in Fig. 5(a), where, for a dielectric with relative per-
mittivity 15, the thickness of the slab is varied between 2
and 6 mm to give a range of mode indices at 10 GHz. This
relation is then used to design two lenses. Both the
Luneburg and the Maxwell fish-eye lens appropriate for
the cosine-shaped surface are shown in Fig. 5(b). It can
be appreciated that small changes in the shape of the di-
electric overlayer can obtain quite differing propagation
characteristics.

The two surface-wave lens designs shown in Fig. 5(b)
were implemented in CST Microwave Studio, and the
electric field component normal to the surface is plotted
in Fig. 6. In both cases, the excitation of the structure is a
point source positioned on the circumference of the lens,
on the right of each figure. For the Luneburg lens, it can
be observed that the omnidirectional source is trans-
formed into a plane wave and therefore creates a direc-
tive beam propagating to the left. In the Maxwell fish-eye
simulations, the new design is also successful in creating
an image of the source on the right side of the lens. One
thing to note is that although the lenses were designed for
an operating frequency of 10 GHz, a shift of the optimal
performance can be observed, to a slightly higher fre-
quency. This is due to the fact that the theory assumes
that the rays are perfectly confined to a surface. How-
ever, for the surface waves under consideration here, the
waves are guided by the dielectric and are therefore not
a perfect 2D system. Due to the curvature, the wave
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Fig. 6. Surface-wave propagation for the Luneburg (a), (¢), (e)
and Maxwell fish-eye lenses (b), (d), (f). All simulations have a
cosine-shaped ground plane and a homogeneous dielectric

overlayer of e, = 15 with a varying thickness. Frequencies
are (a), (b) 10.5 GHz, (c), (d) 11 GHz, (e), (f) 11.5 GHz.

propagating further from the ground plane has a slightly
longer path than that propagating closer to it, resulting in
a small variation of the optimum frequency of operation
from the design frequency of 10 GHz.

In summary, this Letter has proposed a technique to
modify known radially dependant refractive index lenses
so that they function accurately when mapped onto rota-
tionally symmetric curved surfaces. Two examples of
the Luneburg lens and the Maxwell fish-eye lens have
been demonstrated for application onto various surface
shapes and simulated using a dielectric-filled parallel-
plate waveguide. To illustrate the application for surface-
wave antennas, varying thickness dielectric lenses
were designed and simulated, showing the accuracy
of the technique. Due to the isotropy and homogeneity of
these lenses, they are very simple to fabricate and could
therefore prove to be of interest for antenna designs for
improved communication systems.
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